Can Place Flowers @LeetCode
PROBLEM :
Suppose you have a long flowerbed in which some of the plots are planted and some are not. However, flowers cannot be planted in adjacent plots - they would compete for water and both would die.
Given a flowerbed (represented as an array containing 0 and 1, where 0 means empty and 1 means not empty), and a number n, return if n new flowers can be planted in it without violating the no-adjacent-flowers rule.
Example 1:
Input: flowerbed = [1,0,0,0,1], n = 1
Output: True
Example 2:
Input: flowerbed = [1,0,0,0,1], n = 2
Output: False
Note:
The input array won't violate no-adjacent-flowers rule.
The input array size is in the range of [1, 20000].
n is a non-negative integer which won't exceed the input array size.
--------------------------------------------------------------------------------
SIMPLE c++ IMPLEMENTATION :
--------------------------------------------------------------------------------
class Solution {
public:
bool canPlaceFlowers(vector<int>& flowerbed, int n) {
int count = 0;
for(int i = 0; i < flowerbed.size() && count < n; i++) {
if(flowerbed[i] == 0) {
int next = (i == flowerbed.size() - 1) ? 0 : flowerbed[i + 1];
int prev = (i == 0) ? 0 : flowerbed[i - 1];
if(next == 0 && prev == 0) {
flowerbed[i] = 1;
count++;
}
}
}
return count == n;
}
};
--------------------------------------------------------------------------------
Suppose you have a long flowerbed in which some of the plots are planted and some are not. However, flowers cannot be planted in adjacent plots - they would compete for water and both would die.
Given a flowerbed (represented as an array containing 0 and 1, where 0 means empty and 1 means not empty), and a number n, return if n new flowers can be planted in it without violating the no-adjacent-flowers rule.
Example 1:
Input: flowerbed = [1,0,0,0,1], n = 1
Output: True
Example 2:
Input: flowerbed = [1,0,0,0,1], n = 2
Output: False
Note:
The input array won't violate no-adjacent-flowers rule.
The input array size is in the range of [1, 20000].
n is a non-negative integer which won't exceed the input array size.
--------------------------------------------------------------------------------
SIMPLE c++ IMPLEMENTATION :
--------------------------------------------------------------------------------
class Solution {
public:
bool canPlaceFlowers(vector<int>& flowerbed, int n) {
int count = 0;
for(int i = 0; i < flowerbed.size() && count < n; i++) {
if(flowerbed[i] == 0) {
int next = (i == flowerbed.size() - 1) ? 0 : flowerbed[i + 1];
int prev = (i == 0) ? 0 : flowerbed[i - 1];
if(next == 0 && prev == 0) {
flowerbed[i] = 1;
count++;
}
}
}
return count == n;
}
};
--------------------------------------------------------------------------------
Comments
Post a Comment